LTSG: Latent Topical Skip-Gram for Mutually Learning Topic Model and Vector Representations

23 Feb 2017Jarvan LawHankz Hankui ZhuoJunhua HeErhu Rong

Topic models have been widely used in discovering latent topics which are shared across documents in text mining. Vector representations, word embeddings and topic embeddings, map words and topics into a low-dimensional and dense real-value vector space, which have obtained high performance in NLP tasks... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet