Lyrics-Based Music Genre Classification Using a Hierarchical Attention Network

15 Jul 2017  ·  Alexandros Tsaptsinos ·

Music genre classification, especially using lyrics alone, remains a challenging topic in Music Information Retrieval. In this study we apply recurrent neural network models to classify a large dataset of intact song lyrics... As lyrics exhibit a hierarchical layer structure - in which words combine to form lines, lines form segments, and segments form a complete song - we adapt a hierarchical attention network (HAN) to exploit these layers and in addition learn the importance of the words, lines, and segments. We test the model over a 117-genre dataset and a reduced 20-genre dataset. Experimental results show that the HAN outperforms both non-neural models and simpler neural models, whilst also classifying over a higher number of genres than previous research. Through the learning process we can also visualise which words or lines in a song the model believes are important to classifying the genre. As a result the HAN provides insights, from a computational perspective, into lyrical structure and language features that differentiate musical genres. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here