Machine Learning Applications on Neuroimaging for Diagnosis and Prognosis of Epilepsy: A Review

5 Feb 2021  ·  Jie Yuan, Xuming Ran, Keyin Liu, Chen Yao, Yi Yao, Haiyan Wu, Quanying Liu ·

Machine learning is playing an increasingly important role in medical image analysis, spawning new advances in the clinical application of neuroimaging. There have been some reviews on machine learning and epilepsy before, and they mainly focused on electrophysiological signals such as electroencephalography (EEG) and stereo electroencephalography (SEEG), while neglecting the potential of neuroimaging in epilepsy research... Neuroimaging has its important advantages in confirming the range of the epileptic region, which is essential in presurgical evaluation and assessment after surgery. However, it is difficult for EEG to locate the accurate epilepsy lesion region in the brain. In this review, we emphasize the interaction between neuroimaging and machine learning in the context of epilepsy diagnosis and prognosis. We start with an overview of epilepsy and typical neuroimaging modalities used in epilepsy clinics, MRI, DWI, fMRI, and PET. Then, we elaborate two approaches in applying machine learning methods to neuroimaging data: i) the conventional machine learning approach combining manual feature engineering and classifiers, ii) the deep learning approach, such as the convolutional neural networks and autoencoders. Subsequently, the application of machine learning on epilepsy neuroimaging, such as segmentation, localization, and lateralization tasks, as well as tasks directly related to diagnosis and prognosis are looked into in detail. Finally, we discuss the current achievements, challenges, and potential future directions in this field, hoping to pave the way for computer-aided diagnosis and prognosis of epilepsy. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here