Machine Learning in Quantitative PET Imaging

18 Jan 2020Tonghe WangYang LeiYabo FuWalter J. CurranTian LiuXiaofeng Yang

This paper reviewed the machine learning-based studies for quantitative positron emission tomography (PET). Specifically, we summarized the recent developments of machine learning-based methods in PET attenuation correction and low-count PET reconstruction by listing and comparing the proposed methods, study designs and reported performances of the current published studies with brief discussion on representative studies... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet