Machine Learning Model Drift Detection Via Weak Data Slices

11 Aug 2021  ·  Samuel Ackerman, Parijat Dube, Eitan Farchi, Orna Raz, Marcel Zalmanovici ·

Detecting drift in performance of Machine Learning (ML) models is an acknowledged challenge. For ML models to become an integral part of business applications it is essential to detect when an ML model drifts away from acceptable operation. However, it is often the case that actual labels are difficult and expensive to get, for example, because they require expert judgment. Therefore, there is a need for methods that detect likely degradation in ML operation without labels. We propose a method that utilizes feature space rules, called data slices, for drift detection. We provide experimental indications that our method is likely to identify that the ML model will likely change in performance, based on changes in the underlying data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here