Machine Learning Regression based Single Event Transient Modeling Method for Circuit-Level Simulation

22 May 2021  ·  Changqing Xu, Yi Liu, XinFang Liao, JiaLiang Cheng, YinTang Yang ·

In this paper, a novel machine learning regression based single event transient (SET) modeling method is proposed. The proposed method can obtain a reasonable and accurate model without considering the complex physical mechanism. We got plenty of SET current data of SMIC 130nm bulk CMOS by TCAD simulation under different conditions (e.g. different LET and different drain bias voltage). A multilayer feedfordward neural network is used to build the SET pulse current model by learning the data from TCAD simulation. The proposed model is validated with the simulation results from TCAD simulation. The trained SET pulse current model is implemented as a Verilog-A current source in the Cadence Spectre circuit simulator and an inverter with five fan-outs is used to show the practicability and reasonableness of the proposed SET pulse current model for circuit-level single-event effect (SEE) simulation.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here