Machine Learning Regression for Operator Dynamics

23 Feb 2021  ·  Justin Reyes, Sayandip Dhara, Eduardo R. Mucciolo ·

Determining the dynamics of the expectation values for operators acting on a quantum many-body (QMB) system is a challenging task. Matrix product states (MPS) have traditionally been the "go-to" models for these systems because calculating expectation values in this representation can be done with relative simplicity and high accuracy. However, such calculations can become computationally costly when extended to long times. Here, we present a solution for efficiently extending the computation of expectation values to long time intervals. We utilize a multi-layer perceptron (MLP) model as a tool for regression on MPS expectation values calculated within the regime of short time intervals. With this model, the computational cost of generating long-time dynamics is significantly reduced, while maintaining a high accuracy. These results are demonstrated with operators relevant to quantum spin models in one spatial dimension.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here