Macroscopic Interferometry: Rethinking Depth Estimation With Frequency-Domain Time-Of-Flight

CVPR 2016  ·  Achuta Kadambi, Jamie Schiel, Ramesh Raskar ·

A form of meter-scale, macroscopic interferometry is proposed using conventional time-of-flight (ToF) sensors. Today, ToF sensors use phase-based sampling, where the phase delay between emitted and received, high-frequency signals encodes distance. This paper examines an alternative ToF architecture, inspired by micron-scale, microscopic interferometry, that relies only on frequency sampling: we refer to our proposed macroscopic technique as Frequency-Domain Time of Flight (FD-ToF). The proposed architecture offers several benefits over existing phase ToF systems, such as robustness to phase wrapping and implicit resolution of multi-path interference, all while capturing the same number of subframes. A prototype camera is constructed to demonstrate macroscopic interferometry at meter scale.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here