MAGSAC: marginalizing sample consensus

CVPR 2019  ·  Daniel Barath, Jana Noskova, Jiri Matas ·

A method called, sigma-consensus, is proposed to eliminate the need for a user-defined inlier-outlier threshold in RANSAC. Instead of estimating the noise sigma, it is marginalized over a range of noise scales. The optimized model is obtained by weighted least-squares fitting where the weights come from the marginalization over sigma of the point likelihoods of being inliers. A new quality function is proposed not requiring sigma and, thus, a set of inliers to determine the model quality. Also, a new termination criterion for RANSAC is built on the proposed marginalization approach. Applying sigma-consensus, MAGSAC is proposed with no need for a user-defined sigma and improving the accuracy of robust estimation significantly. It is superior to the state-of-the-art in terms of geometric accuracy on publicly available real-world datasets for epipolar geometry (F and E) and homography estimation. In addition, applying sigma-consensus only once as a post-processing step to the RANSAC output always improved the model quality on a wide range of vision problems without noticeable deterioration in processing time, adding a few milliseconds. The source code is at https://github.com/danini/magsac.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here