Making Deep Q-learning methods robust to time discretization

28 Jan 2019  ·  Corentin Tallec, Léonard Blier, Yann Ollivier ·

Despite remarkable successes, Deep Reinforcement Learning (DRL) is not robust to hyperparameterization, implementation details, or small environment changes (Henderson et al. 2017, Zhang et al. 2018). Overcoming such sensitivity is key to making DRL applicable to real world problems. In this paper, we identify sensitivity to time discretization in near continuous-time environments as a critical factor; this covers, e.g., changing the number of frames per second, or the action frequency of the controller. Empirically, we find that Q-learning-based approaches such as Deep Q- learning (Mnih et al., 2015) and Deep Deterministic Policy Gradient (Lillicrap et al., 2015) collapse with small time steps. Formally, we prove that Q-learning does not exist in continuous time. We detail a principled way to build an off-policy RL algorithm that yields similar performances over a wide range of time discretizations, and confirm this robustness empirically.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods