MANGA: Method Agnostic Neural-policy Generalization and Adaptation

19 Nov 2019Homanga BharadhwajShoichiro YamaguchiShin-ichi Maeda

In this paper we target the problem of transferring policies across multiple environments with different dynamics parameters and motor noise variations, by introducing a framework that decouples the processes of policy learning and system identification. Efficiently transferring learned policies to an unknown environment with changes in dynamics configurations in the presence of motor noise is very important for operating robots in the real world, and our work is a novel attempt in that direction... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet