Manifold regularization based on Nystr{ö}m type subsampling

13 Oct 2017  ·  Abhishake Rastogi, Sivananthan Sampath ·

In this paper, we study the Nystr{\"o}m type subsampling for large scale kernel methods to reduce the computational complexities of big data. We discuss the multi-penalty regularization scheme based on Nystr{\"o}m type subsampling which is motivated from well-studied manifold regularization schemes. We develop a theoretical analysis of multi-penalty least-square regularization scheme under the general source condition in vector-valued function setting, therefore the results can also be applied to multi-task learning problems. We achieve the optimal minimax convergence rates of multi-penalty regularization using the concept of effective dimension for the appropriate subsampling size. We discuss an aggregation approach based on linear function strategy to combine various Nystr{\"o}m approximants. Finally, we demonstrate the performance of multi-penalty regularization based on Nystr{\"o}m type subsampling on Caltech-101 data set for multi-class image classification and NSL-KDD benchmark data set for intrusion detection problem.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here