Markov Chain Importance Sampling -- a highly efficient estimator for MCMC

18 May 2018  ·  Ingmar Schuster, Ilja Klebanov ·

Markov chain (MC) algorithms are ubiquitous in machine learning and statistics and many other disciplines. Typically, these algorithms can be formulated as acceptance rejection methods. In this work we present a novel estimator applicable to these methods, dubbed Markov chain importance sampling (MCIS), which efficiently makes use of rejected proposals. For the unadjusted Langevin algorithm, it provides a novel way of correcting the discretization error. Our estimator satisfies a central limit theorem and improves on error per CPU cycle, often to a large extent. As a by-product it enables estimating the normalizing constant, an important quantity in Bayesian machine learning and statistics.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here