Markov partitions for toral $\mathbb{Z}^2$-rotations featuring Jeandel-Rao Wang shift and model sets

14 Mar 2019Sébastien Labbé

We define a partition $\mathcal{P}_0$ and a $\mathbb{Z}^2$-rotation ($\mathbb{Z}^2$-action defined by rotations) on a 2-dimensional torus whose associated symbolic dynamical system is a minimal proper subshift of the Jeandel-Rao aperiodic Wang shift defined by 11 Wang tiles. We define another partition $\mathcal{P}_\mathcal{U}$ and a $\mathbb{Z}^2$-rotation on $\mathbb{T}^2$ whose associated symbolic dynamical system is equal to a minimal and aperiodic Wang shift defined by 19 Wang tiles... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.