MARL with General Utilities via Decentralized Shadow Reward Actor-Critic

29 May 2021  ·  Junyu Zhang, Amrit Singh Bedi, Mengdi Wang, Alec Koppel ·

We posit a new mechanism for cooperation in multi-agent reinforcement learning (MARL) based upon any nonlinear function of the team's long-term state-action occupancy measure, i.e., a \emph{general utility}. This subsumes the cumulative return but also allows one to incorporate risk-sensitivity, exploration, and priors. % We derive the {\bf D}ecentralized {\bf S}hadow Reward {\bf A}ctor-{\bf C}ritic (DSAC) in which agents alternate between policy evaluation (critic), weighted averaging with neighbors (information mixing), and local gradient updates for their policy parameters (actor). DSAC augments the classic critic step by requiring agents to (i) estimate their local occupancy measure in order to (ii) estimate the derivative of the local utility with respect to their occupancy measure, i.e., the "shadow reward". DSAC converges to $\epsilon$-stationarity in $\mathcal{O}(1/\epsilon^{2.5})$ (Theorem \ref{theorem:final}) or faster $\mathcal{O}(1/\epsilon^{2})$ (Corollary \ref{corollary:communication}) steps with high probability, depending on the amount of communications. We further establish the non-existence of spurious stationary points for this problem, that is, DSAC finds the globally optimal policy (Corollary \ref{corollary:global}). Experiments demonstrate the merits of goals beyond the cumulative return in cooperative MARL.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here