MARLow: A Joint Multiplanar Autoregressive and Low-Rank Approach for Image Completion

3 May 2016Mading LiJiaying LiuZhiwei XiongXiaoyan SunZongming Guo

In this paper, we propose a novel multiplanar autoregressive (AR) model to exploit the correlation in cross-dimensional planes of a similar patch group collected in an image, which has long been neglected by previous AR models. On that basis, we then present a joint multiplanar AR and low-rank based approach (MARLow) for image completion from random sampling, which exploits the nonlocal self-similarity within natural images more effectively... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet