Masked Conditional Neural Networks for Environmental Sound Classification

25 May 2018 Fady Medhat David Chesmore John Robinson

The ConditionaL Neural Network (CLNN) exploits the nature of the temporal sequencing of the sound signal represented in a spectrogram, and its variant the Masked ConditionaL Neural Network (MCLNN) induces the network to learn in frequency bands by embedding a filterbank-like sparseness over the network's links using a binary mask. Additionally, the masking automates the exploration of different feature combinations concurrently analogous to handcrafting the optimum combination of features for a recognition task... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet