Masked Language Modeling Becomes Conditional Density Estimation for Tabular Data Synthesis

31 May 2024  ·  SeungHwan An, Gyeongdong Woo, Jaesung Lim, Changhyun Kim, Sungchul Hong, Jong-June Jeon ·

In this paper, our goal is to generate synthetic data for heterogeneous (mixed-type) tabular datasets with high machine learning utility (MLu). Since the MLu performance depends on accurately approximating the conditional distributions, we focus on devising a synthetic data generation method based on conditional distribution estimation. We introduce MaCoDE by redefining the consecutive multi-class classification task of Masked Language Modeling (MLM) as histogram-based non-parametric conditional density estimation. Our approach enables the estimation of conditional densities across arbitrary combinations of target and conditional variables. We bridge the theoretical gap between distributional learning and MLM by demonstrating that minimizing the orderless multi-class classification loss leads to minimizing the total variation distance between conditional distributions. To validate our proposed model, we evaluate its performance in synthetic data generation across 10 real-world datasets, demonstrating its ability to adjust data privacy levels easily without re-training. Additionally, since masked input tokens in MLM are analogous to missing data, we further assess its effectiveness in handling training datasets with missing values, including multiple imputations of the missing entries.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods