Massive Data Clustering in Moderate Dimensions from the Dual Spaces of Observation and Attribute Data Clouds

6 Apr 2017  ·  Fionn Murtagh ·

Cluster analysis of very high dimensional data can benefit from the properties of such high dimensionality. Informally expressed, in this work, our focus is on the analogous situation when the dimensionality is moderate to small, relative to a massively sized set of observations... Mathematically expressed, these are the dual spaces of observations and attributes. The point cloud of observations is in attribute space, and the point cloud of attributes is in observation space. In this paper, we begin by summarizing various perspectives related to methodologies that are used in multivariate analytics. We draw on these to establish an efficient clustering processing pipeline, both partitioning and hierarchical clustering. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here