Exploiting the Depth and Angular Domains for Massive Near-Field Spatial Multiplexing

5 Jul 2023  ·  Parisa Ramezani, Alva Kosasih, Amna Irshad, Emil Björnson ·

In this article, we present our vision for how extremely large aperture arrays (ELAAs), equipped with hundreds or thousands of antennas, can play a major role in future 6G networks by enabling a remarkable increase in data rates through spatial multiplexing of a massive number of data streams to both a single user and many simultaneous users. Specifically, with the quantum leap in the array aperture size, the users will be in the so-called radiative near-field region of the array, where previously negligible physical phenomena dominate the propagation conditions and give the channel matrices more favorable properties. This article presents the foundational properties of communication in the radiative near-field region and then exemplifies how these properties enable two unprecedented spatial multiplexing schemes: depth-domain multiplexing of multiple users and angular multiplexing of data streams to a single user. We also highlight research challenges and open problems that require further investigation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here