MATCH POLICY: A Simple Pipeline from Point Cloud Registration to Manipulation Policies

23 Sep 2024  ·  Haojie Huang, Haotian Liu, Dian Wang, Robin Walters, Robert Platt ·

Many manipulation tasks require the robot to rearrange objects relative to one another. Such tasks can be described as a sequence of relative poses between parts of a set of rigid bodies. In this work, we propose MATCH POLICY, a simple but novel pipeline for solving high-precision pick and place tasks. Instead of predicting actions directly, our method registers the pick and place targets to the stored demonstrations. This transfers action inference into a point cloud registration task and enables us to realize nontrivial manipulation policies without any training. MATCH POLICY is designed to solve high-precision tasks with a key-frame setting. By leveraging the geometric interaction and the symmetries of the task, it achieves extremely high sample efficiency and generalizability to unseen configurations. We demonstrate its state-of-the-art performance across various tasks on RLBench benchmark compared with several strong baselines and test it on a real robot with six tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods