Material Classification in the Wild: Do Synthesized Training Data Generalise Better than Real-World Training Data?

We question the dominant role of real-world training images in the field of material classification by investigating whether synthesized data can generalise more effectively than real-world data. Experimental results on three challenging real-world material databases show that the best performing pre-trained convolutional neural network (CNN) architectures can achieve up to 91.03% mean average precision when classifying materials in cross-dataset scenarios... We demonstrate that synthesized data achieve an improvement on mean average precision when used as training data and in conjunction with pre-trained CNN architectures, which spans from ~ 5% to ~ 19% across three widely used material databases of real-world images. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here