MateRobot: Material Recognition in Wearable Robotics for People with Visual Impairments

28 Feb 2023  ·  Junwei Zheng, Jiaming Zhang, Kailun Yang, Kunyu Peng, Rainer Stiefelhagen ·

People with Visual Impairments (PVI) typically recognize objects through haptic perception. Knowing objects and materials before touching is desired by the target users but under-explored in the field of human-centered robotics. To fill this gap, in this work, a wearable vision-based robotic system, MateRobot, is established for PVI to recognize materials and object categories beforehand. To address the computational constraints of mobile platforms, we propose a lightweight yet accurate model MateViT to perform pixel-wise semantic segmentation, simultaneously recognizing both objects and materials. Our methods achieve respective 40.2% and 51.1% of mIoU on COCOStuff-10K and DMS datasets, surpassing the previous method with +5.7% and +7.0% gains. Moreover, on the field test with participants, our wearable system reaches a score of 28 in the NASA-Task Load Index, indicating low cognitive demands and ease of use. Our MateRobot demonstrates the feasibility of recognizing material property through visual cues and offers a promising step towards improving the functionality of wearable robots for PVI. The source code has been made publicly available at https://junweizheng93.github.io/publications/MATERobot/MATERobot.html.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods