Matrix product states and the nonabelian rotor model

23 Jul 2015Ashley Milsted

We use uniform matrix product states (MPS) to study the (1+1)D $O(2)$ and $O(4)$ rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free nonabelian lattice gauge theory on a "hawaiian earring" graph for $U(1)$ and $SU(2)$, respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the $\beta$ function, we find excellent agreement with known results, locating the BKT transition for $O(2)$ and successfully entering the asymptotic weak-coupling regime for $O(4)$... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet