Max-Margin Boltzmann Machines for Object Segmentation

CVPR 2014  ·  Jimei Yang, Simon Safar, Ming-Hsuan Yang ·

We present Max-Margin Boltzmann Machines (MMBMs) for object segmentation. MMBMs are essentially a class of Conditional Boltzmann Machines that model the joint distribution of hidden variables and output labels conditioned on input observations. In addition to image-to-label connections, we build direct image-to-hidden connections to facilitate global shape prediction, and thus derive a simple Iterated Conditional Modes algorithm for efficient maximum a posteriori inference. We formulate a max-margin objective function for discriminative training, and analyze the effects of different margin functions on learning. We evaluate MMBMs using three datasets against state-of-the-art methods to demonstrate the strength of the proposed algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here