Max-Margin Nonparametric Latent Feature Models for Link Prediction

24 Feb 2016  ·  Jun Zhu, Jiaming Song, Bei Chen ·

Link prediction is a fundamental task in statistical network analysis. Recent advances have been made on learning flexible nonparametric Bayesian latent feature models for link prediction. In this paper, we present a max-margin learning method for such nonparametric latent feature relational models. Our approach attempts to unite the ideas of max-margin learning and Bayesian nonparametrics to discover discriminative latent features for link prediction. It inherits the advances of nonparametric Bayesian methods to infer the unknown latent social dimension, while for discriminative link prediction, it adopts the max-margin learning principle by minimizing a hinge-loss using the linear expectation operator, without dealing with a highly nonlinear link likelihood function. For posterior inference, we develop an efficient stochastic variational inference algorithm under a truncated mean-field assumption. Our methods can scale up to large-scale real networks with millions of entities and tens of millions of positive links. We also provide a full Bayesian formulation, which can avoid tuning regularization hyper-parameters. Experimental results on a diverse range of real datasets demonstrate the benefits inherited from max-margin learning and Bayesian nonparametric inference.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here