Max-Margin Object Detection

31 Jan 2015  ·  Davis E. King ·

Most object detection methods operate by applying a binary classifier to sub-windows of an image, followed by a non-maximum suppression step where detections on overlapping sub-windows are removed. Since the number of possible sub-windows in even moderately sized image datasets is extremely large, the classifier is typically learned from only a subset of the windows. This avoids the computational difficulty of dealing with the entire set of sub-windows, however, as we will show in this paper, it leads to sub-optimal detector performance. In particular, the main contribution of this paper is the introduction of a new method, Max-Margin Object Detection (MMOD), for learning to detect objects in images. This method does not perform any sub-sampling, but instead optimizes over all sub-windows. MMOD can be used to improve any object detection method which is linear in the learned parameters, such as HOG or bag-of-visual-word models. Using this approach we show substantial performance gains on three publicly available datasets. Strikingly, we show that a single rigid HOG filter can outperform a state-of-the-art deformable part model on the Face Detection Data Set and Benchmark when the HOG filter is learned via MMOD.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here