Paper

Maximal Domain Independent Representations Improve Transfer Learning

The most effective domain adaptation (DA) involves the decomposition of data representation into a domain independent representation (DIRep), and a domain dependent representation (DDRep). A classifier is trained by using the DIRep of the labeled source images. Since the DIRep is domain invariant, the classifier can be "transferred" to make predictions for the target domain with no (or few) labels. However, information useful for classification in the target domain can "hide" in the DDRep in current DA algorithms such as Domain-Separation-Networks (DSN). DSN's weak constraint to enforce orthogonality of DIRep and DDRep, allows this hiding and can result in poor performance. To address this shortcoming, we developed a new algorithm wherein a stronger constraint is imposed to minimize the DDRep by using a KL divergent loss for the DDRep in order to create the maximal DIRep that enhances transfer learning performance. By using synthetic data sets, we show explicitly that depending on initialization DSN with its weaker constraint can lead to sub-optimal solutions with poorer DA performance whereas our algorithm with maximal DIRep is robust against such perturbations. We demonstrate the equal-or-better performance of our approach against state-of-the-art algorithms by using several standard benchmark image datasets including Office. We further highlight the compatibility of our algorithm with pretrained models, extending its applicability and versatility in real-world scenarios.

Results in Papers With Code
(↓ scroll down to see all results)