MazeBase: A Sandbox for Learning from Games

23 Nov 2015  ·  Sainbayar Sukhbaatar, Arthur Szlam, Gabriel Synnaeve, Soumith Chintala, Rob Fergus ·

This paper introduces MazeBase: an environment for simple 2D games, designed as a sandbox for machine learning approaches to reasoning and planning. Within it, we create 10 simple games embodying a range of algorithmic tasks (e.g. if-then statements or set negation). A variety of neural models (fully connected, convolutional network, memory network) are deployed via reinforcement learning on these games, with and without a procedurally generated curriculum. Despite the tasks' simplicity, the performance of the models is far from optimal, suggesting directions for future development. We also demonstrate the versatility of MazeBase by using it to emulate small combat scenarios from StarCraft. Models trained on the MazeBase version can be directly applied to StarCraft, where they consistently beat the in-game AI.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here