MCMC Guided CNN Training and Segmentation for Pancreas Extraction

9 Mar 2020  ·  Jinchan He, Xiaxia Yu, Chudong Cai, Yi Gao ·

Efficient organ segmentation is the precondition of various quantitative analysis. Segmenting the pancreas from abdominal CT images is a challenging task because of its high anatomical variability in shape, size and location... What's more, the pancreas only occupies a small portion in abdomen, and the organ border is very fuzzy. All these factors make the segmentation methods of other organs less suitable for the pancreas segmentation. In this report, we propose a Markov Chain Monte Carlo (MCMC) sampling guided convolutional neural network (CNN) approach, in order to handle such difficulties in morphological and photometric variabilities. Specifically, the proposed method mainly contains three steps: First, registration is carried out to mitigate the body weight and location variability. Then, an MCMC sampling is employed to guide the sampling of 3D patches, which are fed to the CNN for training. At the same time, the pancreas distribution is also learned for the subsequent segmentation. Third, sampled from the learned distribution, an MCMC process guides the segmentation process. Lastly, the patches based segmentation is fused using a Bayesian voting scheme. This method is evaluated on the NIH pancreatic datasets which contains 82 abdominal contrast-enhanced CT volumes. Finally, we achieved a competitive result of 78.13% Dice Similarity Coefficient value and 82.65% Recall value in testing data. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here