MDP environments for the OpenAI Gym

26 Sep 2017  ·  Andreas Kirsch ·

The OpenAI Gym provides researchers and enthusiasts with simple to use environments for reinforcement learning. Even the simplest environment have a level of complexity that can obfuscate the inner workings of RL approaches and make debugging difficult. This whitepaper describes a Python framework that makes it very easy to create simple Markov-Decision-Process environments programmatically by specifying state transitions and rewards of deterministic and non-deterministic MDPs in a domain-specific language in Python. It then presents results and visualizations created with this MDP framework.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here