A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks

NeurIPS 2020  ·  Zixiang Chen, Yuan Cao, Quanquan Gu, Tong Zhang ·

A recent breakthrough in deep learning theory shows that the training of over-parameterized deep neural networks can be characterized by a kernel function called \textit{neural tangent kernel} (NTK). However, it is known that this type of results does not perfectly match the practice, as NTK-based analysis requires the network weights to stay very close to their initialization throughout training, and cannot handle regularizers or gradient noises. In this paper, we provide a generalized neural tangent kernel analysis and show that noisy gradient descent with weight decay can still exhibit a "kernel-like" behavior. This implies that the training loss converges linearly up to a certain accuracy. We also establish a novel generalization error bound for two-layer neural networks trained by noisy gradient descent with weight decay.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods