Memory Augmented Generative Adversarial Networks for Anomaly Detection

7 Feb 2020  ·  Ziyi Yang, Teng Zhang, Iman Soltani Bozchalooi, Eric Darve ·

In this paper, we present a memory-augmented algorithm for anomaly detection. Classical anomaly detection algorithms focus on learning to model and generate normal data, but typically guarantees for detecting anomalous data are weak. The proposed Memory Augmented Generative Adversarial Networks (MEMGAN) interacts with a memory module for both the encoding and generation processes. Our algorithm is such that most of the \textit{encoded} normal data are inside the convex hull of the memory units, while the abnormal data are isolated outside. Such a remarkable property leads to good (resp.\ poor) reconstruction for normal (resp.\ abnormal) data and therefore provides a strong guarantee for anomaly detection. Decoded memory units in MEMGAN are more interpretable and disentangled than previous methods, which further demonstrates the effectiveness of the memory mechanism. Experimental results on twenty anomaly detection datasets of CIFAR-10 and MNIST show that MEMGAN demonstrates significant improvements over previous anomaly detection methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here