Message-passing algorithms for synchronization problems over compact groups

14 Oct 2016  ·  Amelia Perry, Alexander S. Wein, Afonso S. Bandeira, Ankur Moitra ·

Various alignment problems arising in cryo-electron microscopy, community detection, time synchronization, computer vision, and other fields fall into a common framework of synchronization problems over compact groups such as Z/L, U(1), or SO(3). The goal of such problems is to estimate an unknown vector of group elements given noisy relative observations. We present an efficient iterative algorithm to solve a large class of these problems, allowing for any compact group, with measurements on multiple 'frequency channels' (Fourier modes, or more generally, irreducible representations of the group). Our algorithm is a highly efficient iterative method following the blueprint of approximate message passing (AMP), which has recently arisen as a central technique for inference problems such as structured low-rank estimation and compressed sensing. We augment the standard ideas of AMP with ideas from representation theory so that the algorithm can work with distributions over compact groups. Using standard but non-rigorous methods from statistical physics we analyze the behavior of our algorithm on a Gaussian noise model, identifying phases where the problem is easy, (computationally) hard, and (statistically) impossible. In particular, such evidence predicts that our algorithm is information-theoretically optimal in many cases, and that the remaining cases show evidence of statistical-to-computational gaps.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here