META-DES.H: a dynamic ensemble selection technique using meta-learning and a dynamic weighting approach

1 Nov 2018Rafael M. O. CruzRobert SabourinGeorge D. C. Cavalcanti

In Dynamic Ensemble Selection (DES) techniques, only the most competent classifiers are selected to classify a given query sample. Hence, the key issue in DES is how to estimate the competence of each classifier in a pool to select the most competent ones... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet