Meta Inverse Reinforcement Learning via Maximum Reward Sharing for Human Motion Analysis

7 Oct 2017  ·  Kun Li, Joel W. Burdick ·

This work handles the inverse reinforcement learning (IRL) problem where only a small number of demonstrations are available from a demonstrator for each high-dimensional task, insufficient to estimate an accurate reward function. Observing that each demonstrator has an inherent reward for each state and the task-specific behaviors mainly depend on a small number of key states, we propose a meta IRL algorithm that first models the reward function for each task as a distribution conditioned on a baseline reward function shared by all tasks and dependent only on the demonstrator, and then finds the most likely reward function in the distribution that explains the task-specific behaviors. We test the method in a simulated environment on path planning tasks with limited demonstrations, and show that the accuracy of the learned reward function is significantly improved. We also apply the method to analyze the motion of a patient under rehabilitation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here