Meta-neural-network for Realtime and Passive Deep-learning-based Object Recognition

16 Sep 2019Jingkai WengYujiang DingChengbo HuXue-feng ZhuBin LiangJing YangJianchun Cheng

Deep-learning recently show great success across disciplines yet conventionally require time-consuming computer processing or bulky-sized diffractive elements. Here we theoretically propose and experimentally demonstrate a purely-passive "meta-neural-network" with compactness and high-resolution for real-time recognizing complicated objects by analyzing acoustic scattering... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet