TASK
DATASET
MODEL
METRIC NAME
METRIC VALUE
GLOBAL RANK
EXTRA DATA
REMOVE
Image Classification
ImageNet
CAFormer-B36 (224 res, 21K)
Top 1 Accuracy
87.4%
# 75
Image Classification
ImageNet
CAFormer-B36 (224 res, 21K)
Number of params
99M
# 736
Image Classification
ImageNet
CAFormer-B36 (224 res, 21K)
GFLOPs
23.2
# 349
Image Classification
ImageNet
CAFormer-M36 (384 res, 21K)
Top 1 Accuracy
87.5%
# 68
Image Classification
ImageNet
CAFormer-M36 (384 res, 21K)
Number of params
56M
# 630
Image Classification
ImageNet
CAFormer-M36 (384 res, 21K)
GFLOPs
42
# 385
Image Classification
ImageNet
CAFormer-M36 (224 res, 21K)
Top 1 Accuracy
86.6%
# 110
Image Classification
ImageNet
CAFormer-M36 (224 res, 21K)
Number of params
56M
# 630
Image Classification
ImageNet
CAFormer-M36 (224 res, 21K)
GFLOPs
13.2
# 302
Image Classification
ImageNet
ConvFormer-M36 (384 res, 21K)
Top 1 Accuracy
86.9%
# 95
Image Classification
ImageNet
ConvFormer-M36 (384 res, 21K)
Number of params
57M
# 636
Image Classification
ImageNet
ConvFormer-M36 (384 res, 21K)
GFLOPs
37.7
# 379
Image Classification
ImageNet
ConvFormer-M36 (224 res, 21K)
Top 1 Accuracy
86.1%
# 143
Image Classification
ImageNet
ConvFormer-M36 (224 res, 21K)
Number of params
57M
# 636
Image Classification
ImageNet
ConvFormer-M36 (224 res, 21K)
GFLOPs
12.8
# 299
Image Classification
ImageNet
CAFormer-S36 (384 res, 21K)
Top 1 Accuracy
86.9%
# 95
Image Classification
ImageNet
CAFormer-S36 (384 res, 21K)
Number of params
39M
# 553
Image Classification
ImageNet
CAFormer-S36 (384 res, 21K)
GFLOPs
26.0
# 356
Image Classification
ImageNet
CAFormer-S36 (224 res, 21K)
Top 1 Accuracy
85.8%
# 156
Image Classification
ImageNet
CAFormer-S36 (224 res, 21K)
Number of params
39M
# 553
Image Classification
ImageNet
CAFormer-S36 (224 res, 21K)
GFLOPs
8.0
# 248
Image Classification
ImageNet
ConvFormer-S36 (384 res, 21K)
Top 1 Accuracy
86.4%
# 121
Image Classification
ImageNet
ConvFormer-S36 (384 res, 21K)
Number of params
40M
# 565
Image Classification
ImageNet
ConvFormer-S36 (384 res, 21K)
GFLOPs
22.4
# 345
Image Classification
ImageNet
ConvFormer-S36 (224 res, 21K)
Top 1 Accuracy
85.4%
# 185
Image Classification
ImageNet
ConvFormer-S36 (224 res, 21K)
Number of params
40M
# 565
Image Classification
ImageNet
ConvFormer-S36 (224 res, 21K)
GFLOPs
7.6
# 239
Image Classification
ImageNet
CAFormer-S18 (384 res, 21K)
Top 1 Accuracy
85.4%
# 185
Image Classification
ImageNet
CAFormer-S18 (384 res, 21K)
Number of params
26M
# 497
Image Classification
ImageNet
CAFormer-S18 (384 res, 21K)
GFLOPs
13.4
# 305
Image Classification
ImageNet
CAFormer-S18 (224 res, 21K)
Top 1 Accuracy
84.1%
# 271
Image Classification
ImageNet
CAFormer-S18 (224 res, 21K)
Number of params
26M
# 497
Image Classification
ImageNet
CAFormer-S18 (224 res, 21K)
GFLOPs
4.1
# 178
Image Classification
ImageNet
ConvFormer-S18 (384 res, 21K)
Top 1 Accuracy
85.0%
# 215
Image Classification
ImageNet
ConvFormer-S18 (384 res, 21K)
Number of params
27M
# 505
Image Classification
ImageNet
ConvFormer-S18 (384 res, 21K)
GFLOPs
11.6
# 290
Image Classification
ImageNet
ConvFormer-S18 (224 res, 21K)
Top 1 Accuracy
83.7%
# 302
Image Classification
ImageNet
ConvFormer-S18 (224 res, 21K)
Number of params
27M
# 505
Image Classification
ImageNet
ConvFormer-S18 (224 res, 21K)
GFLOPs
3.9
# 172
Image Classification
ImageNet
CAFormer-M36 (384 res)
Top 1 Accuracy
86.2%
# 139
Image Classification
ImageNet
CAFormer-M36 (384 res)
Number of params
56M
# 630
Image Classification
ImageNet
CAFormer-M36 (384 res)
GFLOPs
42.0
# 385
Image Classification
ImageNet
CAFormer-S18 (224 res)
Top 1 Accuracy
83.6%
# 312
Image Classification
ImageNet
CAFormer-S18 (224 res)
Number of params
26M
# 497
Image Classification
ImageNet
CAFormer-S18 (224 res)
GFLOPs
4.1
# 178
Image Classification
ImageNet
CAFormer-S36 (384 res)
Top 1 Accuracy
85.7%
# 166
Image Classification
ImageNet
CAFormer-S36 (384 res)
Number of params
39M
# 553
Image Classification
ImageNet
CAFormer-S36 (384 res)
GFLOPs
26.0
# 356
Image Classification
ImageNet
CAFormer-S36 (224 res)
Top 1 Accuracy
84.5%
# 243
Image Classification
ImageNet
CAFormer-S36 (224 res)
Number of params
39M
# 553
Image Classification
ImageNet
CAFormer-S36 (224 res)
GFLOPs
8.0
# 248
Image Classification
ImageNet
CAFormer-B36 (384 res, 21K)
Top 1 Accuracy
88.1%
# 54
Image Classification
ImageNet
CAFormer-B36 (384 res, 21K)
Number of params
99M
# 736
Image Classification
ImageNet
CAFormer-B36 (384 res, 21K)
GFLOPs
72.2
# 410
Image Classification
ImageNet
ConvFormer-S18 (224 res)
Top 1 Accuracy
83.0%
# 365
Image Classification
ImageNet
ConvFormer-S18 (224 res)
Number of params
27M
# 505
Image Classification
ImageNet
ConvFormer-S18 (224 res)
GFLOPs
3.9
# 172
Image Classification
ImageNet
ConvFormer-S36 (224 res)
Top 1 Accuracy
84.1%
# 271
Image Classification
ImageNet
ConvFormer-S36 (224 res)
Number of params
40M
# 565
Image Classification
ImageNet
ConvFormer-S36 (224 res)
GFLOPs
7.6
# 239
Image Classification
ImageNet
ConvFormer-S18 (384 res)
Top 1 Accuracy
84.4%
# 248
Image Classification
ImageNet
ConvFormer-S18 (384 res)
Number of params
27M
# 505
Image Classification
ImageNet
ConvFormer-S18 (384 res)
GFLOPs
11.6
# 290
Image Classification
ImageNet
ConvFormer-M36 (224 res)
Top 1 Accuracy
84.5%
# 243
Image Classification
ImageNet
ConvFormer-M36 (224 res)
Number of params
57M
# 636
Image Classification
ImageNet
ConvFormer-M36 (224 res)
GFLOPs
12.8
# 299
Image Classification
ImageNet
CAFormer-S18 (384 res)
Top 1 Accuracy
85.0%
# 215
Image Classification
ImageNet
CAFormer-S18 (384 res)
Number of params
26M
# 497
Image Classification
ImageNet
CAFormer-S18 (384 res)
GFLOPs
13.4
# 305
Image Classification
ImageNet
CAFormer-M36 (224 res)
Top 1 Accuracy
85.2%
# 200
Image Classification
ImageNet
CAFormer-M36 (224 res)
Number of params
56M
# 630
Image Classification
ImageNet
CAFormer-M36 (224 res)
GFLOPs
13.2
# 302
Image Classification
ImageNet
ConvFormer-S36 (384 res)
Top 1 Accuracy
85.4%
# 185
Image Classification
ImageNet
ConvFormer-S36 (384 res)
Number of params
40M
# 565
Image Classification
ImageNet
ConvFormer-S36 (384 res)
GFLOPs
22.4
# 345
Image Classification
ImageNet
ConvFormer-M36 (384 res)
Top 1 Accuracy
85.6%
# 174
Image Classification
ImageNet
ConvFormer-M36 (384 res)
Number of params
57M
# 636
Image Classification
ImageNet
ConvFormer-M36 (384 res)
GFLOPs
37.7
# 379
Image Classification
ImageNet
ConvFormer-B36 (384 res, 21K)
Top 1 Accuracy
87.6%
# 66
Image Classification
ImageNet
ConvFormer-B36 (384 res, 21K)
Number of params
100M
# 743
Image Classification
ImageNet
ConvFormer-B36 (384 res, 21K)
GFLOPs
66.5
# 407
Image Classification
ImageNet
ConvFormer-B36 (224 res, 21K)
Top 1 Accuracy
87.0%
# 92
Image Classification
ImageNet
ConvFormer-B36 (224 res, 21K)
Number of params
100M
# 743
Image Classification
ImageNet
ConvFormer-B36 (224 res, 21K)
GFLOPs
22.6
# 347
Image Classification
ImageNet
ConvFormer-B36 (224 res)
Top 1 Accuracy
84.8%
# 225
Image Classification
ImageNet
ConvFormer-B36 (224 res)
Number of params
100M
# 743
Image Classification
ImageNet
ConvFormer-B36 (224 res)
GFLOPs
22.6
# 347
Image Classification
ImageNet
CAFormer-B36 (224 res)
Top 1 Accuracy
85.5%
# 177
Image Classification
ImageNet
CAFormer-B36 (224 res)
Number of params
99M
# 736
Image Classification
ImageNet
CAFormer-B36 (224 res)
GFLOPs
23.2
# 349
Image Classification
ImageNet
ConvFormer-B36 (384 res)
Top 1 Accuracy
85.7%
# 166
Image Classification
ImageNet
ConvFormer-B36 (384 res)
Number of params
100M
# 743
Image Classification
ImageNet
ConvFormer-B36 (384 res)
GFLOPs
66.5
# 407
Image Classification
ImageNet
CAFormer-B36 (384 res)
Top 1 Accuracy
86.4%
# 121
Image Classification
ImageNet
CAFormer-B36 (384 res)
Number of params
99M
# 736
Image Classification
ImageNet
CAFormer-B36 (384 res)
GFLOPs
72.2
# 410