MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing

To capture high-speed videos using a two-dimensional detector, video snapshot compressive imaging (SCI) is a promising system, where the video frames are coded by different masks and then compressed to a snapshot measurement. Following this, efficient algorithms are desired to reconstruct the high-speed frames, where the state-of-the-art results are achieved by deep learning networks. However, these networks are usually trained for specific small-scale masks and often have high demands of training time and GPU memory, which are hence {\bf \em not flexible} to $i$) a new mask with the same size and $ii$) a larger-scale mask. We address these challenges by developing a Meta Modulated Convolutional Network for SCI reconstruction, dubbed MetaSCI. MetaSCI is composed of a shared backbone for different masks, and light-weight meta-modulation parameters to evolve to different modulation parameters for each mask, thus having the properties of {\bf \em fast adaptation} to new masks (or systems) and ready to {\bf \em scale to large data}. Extensive simulation and real data results demonstrate the superior performance of our proposed approach. Our code is available at {\small\url{}}.

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here