Machine Learning Pipeline for Segmentation and Defect Identification from High Resolution Transmission Electron Microscopy Data

14 Jan 2020  ·  C. K. Groschner, Christina Choi, M. C. Scott ·

In the field of transmission electron microscopy, data interpretation often lags behind acquisition methods, as image processing methods often have to be manually tailored to individual datasets. Machine learning offers a promising approach for fast, accurate analysis of electron microscopy data. Here, we demonstrate a flexible two step pipeline for analysis of high resolution transmission electron microscopy data, which uses a U-Net for segmentation followed by a random forest for detection of stacking faults. Our trained U-Net is able to segment nanoparticle regions from amorphous background with a Dice coefficient of 0.8 and significantly outperforms traditional image segmentation methods. Using these segmented regions, we are then able to classify whether nanoparticles contain a visible stacking fault with 86% accuracy. We provide this adaptable pipeline as an open source tool for the community. The combined output of the segmentation network and classifier offer a way to determine statistical distributions of features of interest, such as size, shape and defect presence, enabling detection of correlations between these features.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here