Methods for applying the Neural Engineering Framework to neuromorphic hardware

27 Aug 2017 Aaron R. Voelker Chris Eliasmith

We review our current software tools and theoretical methods for applying the Neural Engineering Framework to state-of-the-art neuromorphic hardware. These methods can be used to implement linear and nonlinear dynamical systems that exploit axonal transmission time-delays, and to fully account for nonideal mixed-analog-digital synapses that exhibit higher-order dynamics with heterogeneous time-constants... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet