Metric-Fair Classifier Derandomization

15 Jun 2022  ·  Jimmy Wu, Yatong Chen, Yang Liu ·

We study the problem of classifier derandomization in machine learning: given a stochastic binary classifier $f: X \to [0,1]$, sample a deterministic classifier $\hat{f}: X \to \{0,1\}$ that approximates the output of $f$ in aggregate over any data distribution. Recent work revealed how to efficiently derandomize a stochastic classifier with strong output approximation guarantees, but at the cost of individual fairness -- that is, if $f$ treated similar inputs similarly, $\hat{f}$ did not. In this paper, we initiate a systematic study of classifier derandomization with metric fairness guarantees. We show that the prior derandomization approach is almost maximally metric-unfair, and that a simple ``random threshold'' derandomization achieves optimal fairness preservation but with weaker output approximation. We then devise a derandomization procedure that provides an appealing tradeoff between these two: if $f$ is $\alpha$-metric fair according to a metric $d$ with a locality-sensitive hash (LSH) family, then our derandomized $\hat{f}$ is, with high probability, $O(\alpha)$-metric fair and a close approximation of $f$. We also prove generic results applicable to all (fair and unfair) classifier derandomization procedures, including a bias-variance decomposition and reductions between various notions of metric fairness.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here