Coarse-to-Fine Gaze Redirection with Numerical and Pictorial Guidance

7 Apr 2020  ·  Jingjing Chen, Jichao Zhang, Enver Sangineto, Jiayuan Fan, Tao Chen, Nicu Sebe ·

Gaze redirection aims at manipulating the gaze of a given face image with respect to a desired direction (i.e., a reference angle) and it can be applied to many real life scenarios, such as video-conferencing or taking group photos. However, previous work on this topic mainly suffers of two limitations: (1) Low-quality image generation and (2) Low redirection precision. In this paper, we propose to alleviate these problems by means of a novel gaze redirection framework which exploits both a numerical and a pictorial direction guidance, jointly with a coarse-to-fine learning strategy. Specifically, the coarse branch learns the spatial transformation which warps input image according to desired gaze. On the other hand, the fine-grained branch consists of a generator network with conditional residual image learning and a multi-task discriminator. This second branch reduces the gap between the previously warped image and the ground-truth image and recovers finer texture details. Moreover, we propose a numerical and pictorial guidance module~(NPG) which uses a pictorial gazemap description and numerical angles as an extra guide to further improve the precision of gaze redirection. Extensive experiments on a benchmark dataset show that the proposed method outperforms the state-of-the-art approaches in terms of both image quality and redirection precision. The code is available at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here