Micro-Facial Expression Recognition in Video Based on Optimal Convolutional Neural Network (MFEOCNN) Algorithm

29 Sep 2020  ·  S. D. Lalitha, K. K. Thyagharajan ·

Facial expression is a standout amongst the most imperative features of human emotion recognition. For demonstrating the emotional states facial expressions are utilized by the people. In any case, recognition of facial expressions has persisted a testing and intriguing issue with regards to PC vision. Recognizing the Micro-Facial expression in video sequence is the main objective of the proposed approach. For efficient recognition, the proposed method utilizes the optimal convolution neural network. Here the proposed method considering the input dataset is the CK+ dataset. At first, by means of Adaptive median filtering preprocessing is performed in the input image. From the preprocessed output, the extracted features are Geometric features, Histogram of Oriented Gradients features and Local binary pattern features. The novelty of the proposed method is, with the help of Modified Lion Optimization (MLO) algorithm, the optimal features are selected from the extracted features. In a shorter computational time, it has the benefits of rapidly focalizing and effectively acknowledging with the aim of getting an overall arrangement or idea. Finally, the recognition is done by Convolution Neural network (CNN). Then the performance of the proposed MFEOCNN method is analysed in terms of false measures and recognition accuracy. This kind of emotion recognition is mainly used in medicine, marketing, E-learning, entertainment, law and monitoring. From the simulation, we know that the proposed approach achieves maximum recognition accuracy of 99.2% with minimum Mean Absolute Error (MAE) value. These results are compared with the existing for MicroFacial Expression Based Deep-Rooted Learning (MFEDRL), Convolutional Neural Network with Lion Optimization (CNN+LO) and Convolutional Neural Network (CNN) without optimization. The simulation of the proposed method is done in the working platform of MATLAB.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods