MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation

CVPR 2020  ·  Chaoyang He, Haishan Ye, Li Shen, Tong Zhang ·

Many recently proposed methods for Neural Architecture Search (NAS) can be formulated as bilevel optimization. For efficient implementation, its solution requires approximations of second-order methods. In this paper, we demonstrate that gradient errors caused by such approximations lead to suboptimality, in the sense that the optimization procedure fails to converge to a (locally) optimal solution. To remedy this, this paper proposes \mldas, a mixed-level reformulation for NAS that can be optimized efficiently and reliably. It is shown that even when using a simple first-order method on the mixed-level formulation, \mldas\ can achieve a lower validation error for NAS problems. Consequently, architectures obtained by our method achieve consistently higher accuracies than those obtained from bilevel optimization. Moreover, \mldas\ proposes a framework beyond DARTS. It is upgraded via model size-based search and early stopping strategies to complete the search process in around 5 hours. Extensive experiments within the convolutional architecture search space validate the effectiveness of our approach.

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods