Mind Artist: Creating Artistic Snapshots with Human Thought

CVPR 2024  ·  Jiaxuan Chen, Yu Qi, Yueming Wang, Gang Pan ·

We introduce Mind Artist (MindArt) a novel and efficient neural decoding architecture to snap artistic photographs from our mind in a controllable manner. Recently progress has been made in image reconstruction with non-invasive brain recordings but it's still difficult to generate realistic images with high semantic fidelity due to the scarcity of data annotations. Unlike previous methods this work casts the neural decoding into optimal transport (OT) and representation decoupling problems. Specifically under discrete OT theory we design a graph matching-guided neural representation learning framework to seek the underlying correspondences between conceptual semantics and neural signals which yields a natural and meaningful self-supervisory task. Moreover the proposed MindArt structured with multiple stand-alone modal branches enables the seamless incorporation of semantic representation into any visual style information thus leaving it to have multi-modal reconstruction and training-free semantic editing capabilities. By doing so the reconstructed images of MindArt have phenomenal realism both in terms of semantics and appearance. We compare our MindArt with leading alternatives and achieve SOTA performance in different decoding tasks. Importantly our approach can directly generate a series of stylized "mind snapshots" w/o extra optimizations which may open up more potential applications. Code is available at https://github.com/JxuanC/MindArt.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here