MINIMALIST: switched-capacitor circuits for efficient in-memory computation of gated recurrent units

13 May 2025  ·  Sebastian Billaudelle, Laura Kriener, Filippo Moro, Tristan Torchet, Melika Payvand ·

Recurrent neural networks (RNNs) have been a long-standing candidate for processing of temporal sequence data, especially in memory-constrained systems that one may find in embedded edge computing environments. Recent advances in training paradigms have now inspired new generations of efficient RNNs. We introduce a streamlined and hardware-compatible architecture based on minimal gated recurrent units (GRUs), and an accompanying efficient mixed-signal hardware implementation of the model. The proposed design leverages switched-capacitor circuits not only for in-memory computation (IMC), but also for the gated state updates. The mixed-signal cores rely solely on commodity circuits consisting of metal capacitors, transmission gates, and a clocked comparator, thus greatly facilitating scaling and transfer to other technology nodes. We benchmark the performance of our architecture on time series data, introducing all constraints required for a direct mapping to the hardware system. The direct compatibility is verified in mixed-signal simulations, reproducing data recorded from the software-only network model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here