Paper

Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack

The evaluation of robustness against adversarial manipulation of neural networks-based classifiers is mainly tested with empirical attacks as methods for the exact computation, even when available, do not scale to large networks. We propose in this paper a new white-box adversarial attack wrt the $l_p$-norms for $p \in \{1,2,\infty\}$ aiming at finding the minimal perturbation necessary to change the class of a given input... (read more)

Results in Papers With Code
(↓ scroll down to see all results)