Minimax Optimal Submodular Optimization with Bandit Feedback
We consider maximizing a monotonic, submodular set function $f: 2^{[n]} \rightarrow [0,1]$ under stochastic bandit feedback. Specifically, $f$ is unknown to the learner but at each time $t=1,\dots,T$ the learner chooses a set $S_t \subset [n]$ with $|S_t| \leq k$ and receives reward $f(S_t) + \eta_t$ where $\eta_t$ is mean-zero sub-Gaussian noise. The objective is to minimize the learner's regret over $T$ times with respect to ($1-e^{-1}$)-approximation of maximum $f(S_*)$ with $|S_*| = k$, obtained through greedy maximization of $f$. To date, the best regret bound in the literature scales as $k n^{1/3} T^{2/3}$. And by trivially treating every set as a unique arm one deduces that $\sqrt{ {n \choose k} T }$ is also achievable. In this work, we establish the first minimax lower bound for this setting that scales like $\mathcal{O}(\min_{i \le k}(in^{1/3}T^{2/3} + \sqrt{n^{k-i}T}))$. Moreover, we propose an algorithm that is capable of matching the lower bound regret.
PDF Abstract