Mining Commonsense and Domain Knowledge from Math Word Problems

Current neural math solvers learn to incorporate commonsense or domain knowledge by utilizing pre-specified constants or formulas. However, as these constants and formulas are mainly human-specified, the generalizability of the solvers is limited. In this paper, we propose to explicitly retrieve the required knowledge from math problemdatasets. In this way, we can determinedly characterize the required knowledge andimprove the explainability of solvers. Our two algorithms take the problem text andthe solution equations as input. Then, they try to deduce the required commonsense and domain knowledge by integrating information from both parts. We construct two math datasets and show the effectiveness of our algorithms that they can retrieve the required knowledge for problem-solving.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here